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Effect of friction between fiber and matrix on the
fracture toughness of the composite interface

A. T. DIBENEDETTO, M. R. GURVICH
Institute of Materials Science, U-136, University of Connecticut, Storrs, CT 06269, USA
E-mail: adiBened@mail.ims.nconn.edu

A method of evaluating the interfacial fracture toughness using a single-fibre composite test
is proposed. In contrast with the existing techniques, the method takes into account the
phenomenon of friction between the fibre and matrix in the debonding zone. A general
mathematical solution of the problem and modelling of the friction phenomenon are
presented. Finite-element analysis using a ‘‘contact’’ statement is utilized for numerical
evaluation of the stress—strain state. The influence of the coefficient of friction and interfacial
debonding length is analysed in detail. It is shown that the friction reduces the calculated
value of the elastic strain energy release rate for a given debonding length, relative to that
obtained when friction is neglected. The magnitude of the difference depends on the
coefficient of friction, the elastic properties of the fibre and matrix, and the characteristics of
the debonding mechanism. Experimental data on debonding in a series of glass-epoxy
single-fibre composites are analysed using the proposed numerical technique to obtain the
effects of fibre surface treatments and fibre strain-to-break on the interfacial fracture
toughness.  Kluwer Academic Publishers
1. Introduction
The properties of interfaces between fibres and matrix
in fibre-reinforced composites have a profound effect
on the strength and durability of the material [1].
From the mechanical viewpoint, the main function of
the interface is the transfer of stress between fibre and
matrix both before and during the process of failure.
Because composite failure is usually a multi-step pro-
cess of fibre breaks [2— 6], the strength of the interface
will affect the development of critical-size defects in
the material. A limited amount of debonding at the site
of a single-fibre fracture, for example, can provide
a mechanism for crack-tip blunting, which may in-
crease the toughness of the material with a tolerable
loss of composite ultimate strength. Thus, there is a sig-
nificant interest in characterization, analysis, and im-
provement (optimization) of the interface behaviour.

Experimental measurement and analysis of the in-
terfacial strength and toughness in single-fibre com-
posites has been reviewed extensively in the literature
(e.g. [1, 7—16]). Different approaches regarding the
analysis of the rate of release of the mechanical energy
during debonding of the matrix from the fibre have
been considered [17—23]. One method proposed
[16, 24, 25] uses a finite element analysis of the strain
energy release rate, along with an experimental
measurement of the interfacial debonding length. Cal-
culated values of the elastic strain energy release rate,
G

*/5
, i.e. the interfacial fracture toughness, are similar

to those obtained by other techniques.
Because there are always differences between the

elastic properties of the fibre and matrix, radial com-
0022—2461 ( 1998 Kluwer Academic Publishers
pressive stresses at the interface will usually accom-
pany debonding. Consequently, when an embedded
fibre fracture are debonding occurs, there will be a re-
traction of the fibre in the matrix, and a dissipation of
elastic energy due to the frictional resistance. The
effect of friction on G

*/5
has not been satisfactorily

described in previous work. The objective of this pa-
per is to account for the effect of friction on the
calculation of the toughness of interfacial debonding
in single-fibre composites (SFC) from measurements
of the debonding length accompanying the first fibre
fracture. The approach presented is a logical continua-
tion of the method previously published [16].

2. Theory
2.1. Approach
Let us consider an SFC under tensile loading parallel
to the fibre axis. Assume an interfacial debonding of
length, l

$
, occurs after the first fibre break (Fig. 1). In

a general case, for a specific interface and known
elastic properties of the fibre and matrix, the strain
energy release rate of the interface, G, can be repre-
sented as a function of the debond length, l

$
, a para-

meter of loading, and a characteristic of friction.

G"G (l
$
, e, l ) (1)

where the parameter of loading e"*/l is the average
tensile strain (Fig. 2) and l is the coefficient of friction
of the interface. The function G(l

$
, e, l) will be com-

puted using a finite element analysis, and the debond
length, l

$
"l

$,!33%45
, upon its arrest at a constant strain,
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Figure 1 The general scheme of interfacial debonding.

Figure 2 (a) Representative volume of SFC, (b) schematic illustra-
tion of its deformation, and (c) the stress state.

e"e
!33%45

, will be evaluated experimentally [16]. The
strain e

!33%45
is approximately the in situ breaking

strain of the embedded fibre. Thus, the fracture tough-
ness of the interface, G

*/5
, can be calculated as a func-

tion of l

G
*/5
"G(l

$,!33%45
, e

!33%45
, l) (2)

For calculation of G(l
$
, e, l) , we assume that, in a de-

terministic framework, there is a symmetry regarding
the interfacial debonding in both r and z directions
(z is the axis of symmetry). Hence, the energy release
rate of the interface is defined as

G(l
$
, e, l)"!

dº

dA
"!

dº

2p r
&
dl

$

(3)

where º is the total energy of the one half of the SFC
test specimen, A"2pr

&
l
$

is the debonded surface at
one fibre end, and r

&
is the fibre radius.
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Deformation of the SFC considering the friction
may be illustrated in Fig. 2. Here (Fig. 2a), F—H (F@—H)
is the debonding zone, A—B is the axis of symmetry of
the representative area of the SFC, and displacement
* is considered as a parameter of loading (Fig. 2b).
Mutual displacements of the fibre and matrix in the
debonding zone **G"*

G@!*
G

are shown in Fig. 2b
for the points G (matrix) and G@ (fibre) on the interface
(r"r

&
). These displacements depend on the frictional

properties. For example, if there is no friction at all
(l"0), then displacement *

&0
+*

&
(Fig. 2b) because

frictional shear stresses s
&, rz

and s
.,3z

(Fig. 2c) should
be equal to zero (where f and m indicate fibre and
matrix, respectively). In the limiting case of very high
friction (lPR) , the displacements *

G
+*@

G
;

**G+ 0 and *
&0
P0. Therefore, two groups of ex-

ternal stresses acting on the system may be noted,
namely the normal stresses r

&,z
and r

.,z
along the

surfaces B—C and C—D, respectively, and frictional
shear stresses s

&, rz
(surface F@—H) and s

.,rz
(F—H). The

effect of normal and shear stresses along the surface
D—E may be ignored at large values of the ratio r

.
/r

&
when the work of normal stresses along surfaces
F(F@)—H is equal to zero, because there are no mutual
displacements in the radial direction.

In the absence of thermal effects, plastic response,
and damage accumulation, variation of the total en-
ergy dº may be written as

dº"dº
1
!dº

2
(4)

where º
1

is the stored elastic energy and º
2

is the
work of external stresses. Because loading is not a re-
versible process, work of the frictional stresses can be
evaluated as the work of ordinary external stresses.
Thus, taking into account that a contact problem
should be generally considered in a non-linear state-
ment, we have [26]

dº
1
"dCP(A

C~D
)AP

*

0

p
.,z

d*BdA

#P(A
B~C

)AP
*

0

p
&,z

d*BdA

!P(A
F{~H

) AP
*
G{

0

s
&,rz

d*
G{BdA

#P(A
F~H

) AP
*
G

0

s
m, rz

d*
GBdAD (5)

dº
2
"P(A

C~D
)

(r
.,z

d*) dA#P(A
B~C

)

(r
&,z

d*) dA

!P(A
F{~H

)

(s
&, rz

d*
G@) dA

#P(A
F~H

)

(s
&, rz

d*
G
) dA (6)

were integration over A designates the integration
over the surfaces defined in Fig. 2; r

.,z
, r

&,z
are cal-

culated at z"l; and s
&,rz

, s
.,rz

are calculated at r"r
&
.

For the specific case of the stresses being linear



functions of displacements, one can rewrite Equation
(4) as

dº"

1

2 P(A
C~D

)

(*dr
.,z

!p
.,z

d*) dA

#

1

2 P(A
B~C

)

(*dr
&,z

!r
&,z

d*) dA

!

1

2 P(A
F{~H

)

(*
G@ ds

&,rz
!s

&,rz
d*

G@) dA

#

1

2 P(A
F~H

)

(*
G
ds

&,rz
!s

&, rz
d*

G
) dA (7)

Let us consider the case when * is held constant and
only l

$
increases by dl

$
(i.e. debonding at constant

strain). Because there is no external work performed
by stresses r

.,z
and r

&,z
, the variation of the total

energy can be calculated as

dº"

1

2 P(A
C~D

)

(*dr
.,z

) dA#

1

2 P(A
B~C

)

(*dr
&,z

) dA

!

1

2 P(A
F{~H

)

(*
G{

ds
&,rz

!s
&,rz

d*
G{

) dA (8)

#

1

2 P(A
F~H

)

(*
G
ds

&,rz
!s

&,rz
d*

G
) dA

At equilibrium, s
&,rz

"s
., rz

and, thus, the axis-sym-
metrical solution of Equation 3 may be written as

G(l
$
, e, l)"!

*
2r

&
P

r
.

r
&
C
dr

.,z
(r)

dl
$
D rdr

!

*
2r

&
P

r
&

0
C
dr

&,z
(r)

dl
$
D rdr

#

1

2 P
l
$

0
C**G (z)

ds
.,rz

(z)

dl
$

!s
.,rz

(z)
d**G (z)

dl
$
Ddz (9)

where **G"*
G{
!*

G
.

When the stresses are linear functions of e, all com-
ponents of energy are directly proportional to e2, and,
therefore, the toughness may be finally calculated as

G
*/5
"G(l

$
"l

$,!33%45
, e"eN , l) A

e
!33%45
e6 B

2
(10)

where e6 is the unit strain, chosen as e6 "1% in the
present paper.

2.2. Method of numerical realization
The following numerical procedure is used to evaluate
G(l

$
, e, l) with Equation 9. For a specific debonding

length l
$
, G will be evaluated at two different lengths,

l @
$
" l

$
!*

-$
/2 and l @@

$
" l

$
#*

-$
/2; all other para-

meters of the SFC test, including the average strain, e,
and coefficient of friction, l, are held constant. Here,
*
-$

is a small length decrement chosen using a se-
quence of numerical analyses with different values of
*
-$

that define a required level of accuracy. If r @
.,z

,
r @

&,z
, s@

., rz
, *@*G are the characteristics of the stress-
strain state at l
$
" l@

$
, while r @@

.,z
, r @@

&,z
, s@@

., rz
, *@@*G are

those at l
$
" l@@

$
, we have for *

l$
P0.

dr
.(& ),z
dl

$

+

r@@
.(& ),z

!r@
.(& ),z

*
-$

(11a)

ds
.,rz
dl

$

+

s@@
., rz

!s@
.,rz

*
-$

(11b)

d**G
dl

$

+

*@@*G!*@*G
*
-$

(11c)

s
.,rz

+

s@
., rz

#s@@
., rz

2
(11d)

**G+
*@*G#*@@*G

2
(11e)

and a numerical evaluation of G(l
$
, e, l) may be writ-

ten as

G(l
$
, e, l)+!

*
2r

&
*

-$
P

r
.

r
&
(r@@

.,z
!r@

.,z
) rdr

!

*
2r

&
*

-$
P

r
&

0

(r@@
&,z

!r@
&,z

) rdr

#

1

2*
-$
P

l
$

0

(*@*Gs@@.,rz
!*@@*Gs@

.,rz
) dz (12)

Numerical realization of Equation 12 may be sim-
plified as well, because the function s

., rz
(z) varies only

slightly with z and may be considered as approxim-
ately constant. Therefore, G(l

$
, e, l) may be evaluated

as

G(l
$
, e, l)+!

*
2r

&
*
-$
P

r
.

r
&

(r@@
.,z

)r dr

!

*
2r

&
*
-$
P

r
&

0

(r@@
&,z
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#

*
2r

&
*
-$
P

r
.

r
&

(r@
.,z
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#

*
2r

&
*
-$
P

r
&

0

(r@
&,z

) rdr

#

1

2*
-$

s6 @@
., rzP

l
$

0

(*@*G) dz

!

1

2*
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s6 @
.,rz P

l
$

0

(*@@*G) dz

"

1

2pr
&
*

-$

(!¼ @@r#¼ @r#s6 @@
.,rz

g@

!s6 @
., rz

g@@ ) (13)

where the following functions of the stress—strain state

¼r"p* P
r
.

r
&

[r
.,z

] rdr#p* P
r
&

0

[r
&,z

] rdr (14a)

s6
.,rz

"

1

l
$
P

l
$

0

s
.,rz

(z) dz (14b)

g"pr
& P

l
$

0

[**G] dz (14c)
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may be calculated separately for each debonding
length (l @

$
, l @@

$
) using conventional methods of numer-

ical integration.

2.3. Finite-element analysis
Numerical evaluation of the stress—strain state was
carried out using a finite-element analysis (FE-code
MARC [27]). The analysis was developed in a contact
non-linear statement using an iterative procedure of
approximation. The number of iterations used pro-
vided an accuracy of a least three digits for displace-
ments. A typical FE-mesh is shown in Fig. 3,
illustrating a simulation of a SFC deformation at
e"5% (l

$
"20 lm; r

&
"5 lm). The following bound-

ary conditions are defined for an axially symmetric
model:

(a) *
r
"0 along the axis A—B;

(b) *
z
"0 along the axis E—F;

(c) *
z
"* along the axis B—D;

(d) a continuity condition for displacements is ful-
filled along the surface H!C;

(e) a contact condition for two elastic bodies is ful-
filled along surfaces F!H (matrix) and F@!H (fibre):
mutual displacements in th contact zone **G"
*
G{
!*

G
can be seen in Fig. 3.

Because non-zero components of the stress-state
exist in any point of the system, the boundary
conditions, strictly speaking, represent a finite
volume model of a SFC. However, variations (in-
crements) of stresses r

.,z
and r

&,z
with increasing

debonding length should be close to zero in distant
areas. Thus, we have chosen A—B"50 lm+10r

&
and

B—D"30lm+6r
&
to be sufficiently large to provide

satisfactory approximation of the results for infinite
volume.
Figure 3 Typical FE-mesh reflecting deformation of S-glass/Soft epoxy SFC at e"5%.
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2.4. Model of friction
Although the friction phenomenon can be taken into
account using different FE computer codes, including
MARC [27], the practical realization has some diffi-
culties. While, for a very fine mesh and relatively
uniform stress distribution, the result is most accept-
able, the convergence process is often too slow when
there is a significant variability of the stress state.
Thus, a simple friction model, using a relatively coarse
FE-mesh, is introduced.

The friction model uses an equilibrium condition
written in terms of stresses. Because the displacement
*
&0

(Fig. 2b) reduces with increasing coefficient of
friction l, a unique monotonic function *

&0
"'(l)

may be determined in principle. Conversely, an in-
verse function l"'~1(*

&0
) may be calculated as well

(here, '~1 is an inverse function, not an inverse
value!). In other words, displacement *

&0
may be used

as an input (i.e. a parameter of the friction) instead of
the coefficient of friction. Therefore, *

z
"*

&0
should

be introduced as an additional boundary condition for
the point F@. For a relatively long debonding length,
this condition may be written for the whole surface
A—F@.

A value for l may therefore be calculated using the
results of the FE-analysis and the appropriate equilib-
rium equations. Let us consider a part of the fibre
between points F@ and H (Fig. 2c). The balance of
forces in the z-direction may be written as

2nr
& P

l$

0

q
&, rz

(z, r"r
&
) dz"P

r
&

0

r
&,z

(z"l
$
, r)2nrdr

(15)

We assume that the frictional response may be deter-
mined by a Coulomb law

q
&, rz

(z, r"r
&
)"!lr

., r
(z, r"r

&
) (16)



where r
.,r

(z, r"r
&
) are compressive stresses in the

radial direction at the peripheral surface of the fibre.
Thus, taking into account an axially symmetric state-
ment of the problem we obtain

l"!

P
r
&

0

r
&,z

(z"l
$
, r) rdr

r
& P

l
$

0

r
., r

(z, r"r
&
) dz

(17)

While there is no friction when r
.,r

(z, r"r
&
)50,

this limitation can be easily taken into account using
an appropriate numerical procedure of integration of
Equation 17. An algorithm for application of the
model consists of two steps. First, the analysis is de-
veloped for a set of magnitudes *(i)

&0
, i"1, 2, n where

n is the number of independently solved problems.
Values of l(i) and characteristics of the stress—strain
state are calculated for each characteristic *(i)

&0
.

Second, the functions ¼r(l), s6
.,rz

(l), g(l) are deter-
mined using interpolation of all points. The function
G(l), defined by Equation 13, may then be evaluated.

3. Numerical results
3.1. Materials
Embedded single-fibre composite specimens were
made for measuring the effect of surface treatments on
the interfacial fracture toughness of glass fibre/epoxy
composites [16]. The following analysis is a continua-
tion of this work in which the effect of friction on the
calculated values of G is illustrated. The matrices,
fibres, and compositions of the specimens are repro-
duced below [16].

Stiff epoxy: diglycidyl ether of bisphenol-A (DER
331, Dow Chemical) cured with 14 p.h.r. by weight of
tetra-ethylene-pentamine (DEH 26, Dow Chemical).

Soft epoxy: a mixture of 70/30 by weight of DER
331 and diglycidyl-ether of propylene-glycol (DER
732, Dow Chemical) cured with 11.5 p.h.r. by weight of
DEH 26.

S-glass fibres (Owens Corning), with an average
diameter of 10 lm: these fibres were supplied with two
different surface treatments, the first being a starch
coating and the second a commercial epoxy-compat-
ible sizing. The starch-coated fibres were either used
as-received or UV—ozone cleaned for 1 h. The cleaned
(bare) fibres were then surface treated in two different
ways. Some of the fibres were coated with an epoxy
resin mixture 50/50 by weight of DER 331 and DER
732 cured with 10 p.h.r. by weight of DEH 26 from
a solution of 0.3 wt vol % of epoxy resin in acetone.
The bottom of a glass petri dish was filled with the
coating solution and the fibres were added for a period
of 5 min. The fibres were then removed from the
solution and allowed to dry in air for a period of
10 min, after which they were placed into a vaccum
oven and dried at room temperature under vacuum
for 30 min. The oven was brought up to atmospheric
pressure, and the epoxy resin coating was cured at
80 °C for 2h. The remaining UV—ozone cleaned fibres
were coated with methyl-trimethoxy-silane (United
Chemical Technology). The silane was applied by im-
mersing the fibres for 5 min in a primer solution of 5%
silane and 5% water in 90% methanol by volume.
After removal from the primer solution, the fibres were
dried in air for 10 min and then placed in a oven at
100 °C for 30 min.

¼ater-sized E-glass fibres (Union Carbide), with an
average diameter of 13 lm: these fibres were UV—
ozone cleaned for 0.5 h in order to remove organic
impurities. some of the UV—ozone cleaned E-glass
fibres were coated with methyl-trimethoxy-silane fol-
lowing the same procedure described above for the
S-glass fibres. The elastic properties of the compo-
nents are shown in Table I.

3.2. Effect of non-linearity
While a general solution of Equation 6 is non-linear,
we will show that for values of e(10%, the non-
linearity can be neglected and Equations 9 and 10 can
be used to evaluate the interfacial toughness in the
SFC. Let us consider, for example, results of FE ‘‘con-
tact’’ analysis for the S-glass/soft epoxy SFC with
a debonding length l

$
"20 lm. Fig. 4 illustrates the

nearly linear dependence on e of the displacements in
points A (in the z-direction) and D (in the r-direction),
as well as stresses at points B and D in the z-direction.
The same regularities have been noted for the other
SFCs at different l

$
. Because the strains at the first

break in the present study are all less than 6—7% [16],
we are able to calculate the toughness using the simple
linear statement.

3.3. Stress—strain state
A typical distribution of r

.,r
(z, r"r

&
) at different

values of *
&0

for the S-glass/soft epoxy SFC with
a debond length l

$
"20 lm and e"1% are shown in

Fig. 5. The FE solutions in the contact zone close to
the debonding tip and the fibre break are too rough
even for a relatively fine mesh. Thus, the following
approximations regarding stresses r

., r
(z, r"r

&
) are

introduced, as shown in Fig. 6.
(a) the stresses in the vicinity of the fibre break are

considered as constant, i.e.

r
.,r

(z)z
0
, r"r

&
)"r

.,r
(z"z

0
, r"r

&
);

(b) the stresses in the vicinity of the crack tip are
ignored (r

.,r
(z*z

,
, r"r

&
)"0), because r

.,r
(z*z

,
,

r"r
&
)*0 and no frictional shear stresses are in this

zone.
The stresses r

.,r
shown in Fig. 6 are calculated at

l"2.21 (*
&0
"0.40), using the FE code and the

TABLE I Properties of the components

Component Modulus of Poisson’s ratio
elasticity (GPa)

Stiff epoxy 2.9 0.35
Soft epoxy 1.6 0.35
S-glass fibre 86.9 0.22
E-glass fibre 72.0 0.22
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Figure 4 Dependencies of displacements (a) A, (b) D, stresses (c) B, and (d) D on e.
Figure 5 Distributions of r
., 3

(z, r"r
&
). *

&0
(l): (1) 0.00 (99.30); (2)

0.05 (58.46); (3) 0.10 (38.34); (4) 0.15 (20.37), (5) 0.20 (18.42); (6) 0.25
(12.77); (7) 0.30 (8.54), (8) 0.35 (5.26); (9) 0.40 (2.21).

approximations described above. Although from the
principles of equilibrium, the functions r

., r
(z, r"r

&
)

and r
&, r

(z, r"r
&
) should be equal, FE contact analysis

will always produce a certain difference between these
stresses. In all future analyses, we use r

.,r
, because

these stresses reflect the more detailed mesh for the
matrix (Fig. 3), and, therefore, may be considered as
more accurate than the estimates of r

&,r
. The displace-

ments *
G
, *@

G
, and **G are shown in Fig. 7 for

l"2.21 (*
&0
"0.40).
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Figure 6 Distributions of r
., 3

(z, r"r
&
) at l"2.21 calculated by

(a) FEA and (b) its modelling.

The influence of friction on the incremental change
of energy can be analysed by considering separately
the effects of the normal stresses r

&,z
(r

.,z
) and shear

stresses s
.,rz

Fig. 8 shows the calculated work of these
external stresses, ¼r and ¼s respectively, for the S-
glass/soft epoxy SFC at l

$
"20 lm; e"1%. One

can see that ¼r (work of r
&,z

)r
.,z

) at z"l) is



Figure 7 Distributions of *
G
(z), and *@

G
(z).

Figure 8 Dependencies of (a) ¼r and (b) !¼s on l.

a monotonically increasing function of l (Fig. 8a). The
increase is a result of the fact that an increase of
l results in higher stiffness of the system. Thus,
¼r approaches a maximum as lPR. The work of
frictional shear stresses s

.,rz
at r"r

&
, ¼s , however,

must show a maximum at an intermediate value of l.
While the stress s

.,rz
monotonically increases with l,

mutual displacements **G decrease. In the limit of
l"0, s

.,rz
"0, **GPmax and, therefore, ¼s"0.

When lPR, **G"0, s
.,rz

PR, and, therefore,
¼s"0, as shown in Fig. 8b. The magnitudes of
¼r are approximately one order higher than ¼s , and
the difference is determined by the volume of the SFC.
The effect of ¼s cannot be neglected, however, be-
cause the toughness of the interface depends on the
incremental change of the energy, dº, rather than its
absolute value.

3.4. Example of the analytical procedure
Let us consider the calculation of G(l

$
, e, l ) at l

$
"

19.5 lm; e"1% for the S-glass/soft epoxy SFC. The
debonding lengths l

$
@"19; l

$
@@"20 lm (i.e. *

-$
"

1 lm) are introduced for numerical realization of
Equation 13. The values of ¼r , s

., rz
/l, and g as

functions of l are shown in Fig. 9, where the values of
l have been calculated using Equation 17 for different
magnitudes of *

&0
. The respective functions of l may

be approximated by the following second-order poly-
nomials

¼ @r"12.822#0.8432l!0.0302l2 (18a)

¼ @@r"12.698#0.8654l!0.0336l2 (10~12J) (18b)

s6 @
.,rz

/l"6.9977!0.3456l#0.0613l2 (MPa) (18c)

s6 @@
.,rz

/l"6.6923!0.3222l#0.0145l2 (MPa) (18d)

g@"[85.84#5.378l!0.2313l2] (l
$
/l@
$
)2 (lm2) (18e)

g{{"[90.89#5.662l!0.1986l2](l
$
/l@@
$
)2 (lm2) (18f)

The ratios (l
$
/l @

$
)2 and (l

$
/l @@

$
)2 appear in the approxi-

mation of g@ and g@@, respectively, since the function
**G (z) has a roughly triangular form. The integrals,
defined by Equation 14, therefore, are reasonably ap-
proximated using the square of the above-mentioned
ratios. The energy release rate for debonding at the
interface, G(l

$
, e, l), can then be approximated using

Equation 13 in the following form

G(l
$
, e, l)"Gr(l$

, e, l)#Gs (l$
, e, l) (19)

where

Gr"!

1

2pr
&
*
-$

(¼@@r!¼ @r) (20)

Gq"!

1

2pr
&
*
-$

(s6 @
.,rz

g@@!s6 @@
.,rz

g@) (21)

Equations 19—21 are plotted as functions of the coef-
ficient of friction, l, in Fig. 10. In the limit lPR,
there is absolute continuity in the debonding area
F(F@)—H and, therefore, no effect of l

$
at all. In other

words, Gr(lPR)P0, Gs (lPR)P0, and thus,
G(lPR)P0. At practical values of l, however, the
effect of friction on the calculated values of the inter-
facial toughness cannot be neglected.

3.5. Effect of debonding length and
interface treatment

The dependence of G(l
$
, l) for the S-glass/soft epoxy

SFC is presented in Fig. 11a at e"1%. For a constant
strain, e, the calculated value of G(l

$
) decreases with

increasing coefficient of friction at all values of debond
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Figure 9 Dependencies of (a) ¼r , (b) s6
., 3 ;

/l, and (c) g on debon-
ding lengths (e) l@

$
and (h) l @@

$
.

length. The inverse of the fracture toughness at l"0
is nearly a linear function of the debonding length
(Fig. 11b). Extrapolation to l

$
"0 gives 1/G"

0.0485 m2 J~1 (G"20.618 Jm~2) [23]. Because at
l
$
P0 the effect of friction becomes negligible, one can

expect that 1/G(l
$
"0, lO0)+1/G(l

$
"0,l"0).

Thus, the dotted lines drawn in Fig. 11b reflect the
expected dependencies of 1/G(l

$
, l) at short l

$
. Al-

though the approximation of 1/G (l
$
) is close to linear

at l"0, the approximations at l'1.0 are slightly
non-linear.

Experimental data of the debonding length ac-
companying the first fibre fracture in the (S-glass,
E-glass)/(soft and stiff epoxy) SFCs with three different
fibre surface treatments have been reported previously
4246
Figure 10 Dependencies of Gr, Gs, and G on l.

Figure 11 Dependencies of (a) G and (b) 1/G on l and l
$
. l: (e) 0.0,

(h) 0.5, (n) 1.0, (]) 1.5, (*) 2.0, (C) 2.5.

[16]. Calculated values of G were based on a FE
contact analysis with l"0. Results of calculations
using Equation 10 and considering the effect of
friction, are shown in Table II and in Fig. 12 for



TABLE II Characteristics of debonding and fracture toughness

Type Epoxy/glass Fibre surface e
!33%45

[16] l
$,!33%45

[16] G
*/5

(l"0) G
*/5

(l"1) G
*/5

(l"3)
treatment (%) lm (J m~2) (J m~2) (J m~2)

A Stiff/S Starch 5.2$0.5 5.6$0.3 327.1 295.8 206.7
B Stiff/S Soft epoxy coating 4.8$0.4 5.5$0.6 278.7 252.0 176.1
C Stiff/S Methyltrimethoxysilane 4.6$0.3 9.4$1.0 187.7 160.6 119.0
D Soft/S Starch 6.1$ 0.7 9.2$1.0 264.5 232.2 181.7
E Soft/S Soft epoxy coating 5.8$0.6 9.3$0.8 234.2 206.5 160.7
F Soft/S Methyltrimethoxysilane 5.1$0.4 14.2$2.3 132.5 117.2 97.0
G Stiff/E Methyltrimethoxysilane 2.5$0.2 3.9$0.6 72.5 62.6 48.1
H Soft/E Methyltrimethoxysilane 2.4$0.2 5.8$0.4 53.4 47.8 38.0
Figure 12 Dependencies of G
*/5

on l. Type: (e) A, (h) B, (n) C, (])
D, (* ) E, (C) F, (#) G, (!) H.

0)l)3. Reduction in the calculated values of frac-
ture toughness because of the friction is of the order of
10%—15% with l"1.0 and 27%—37% with l"3.0
(Table II). The SFCs containing E-glass fibres possess
much lower toughness than similar composites using
S-glass fibres. Moreover, there is significant difference
in the values of G between, for example, the Type ‘‘C’’
and ‘‘G’’ systems in spite of the fact that both the fibre
surface treatment (methyltrimethoxysilane) and the
matrix (Stiff) are identical in the two composites. Nu-
merically, the primary difference between the two sys-
tems is in the strain-at-first break of the fibres, i.e.
e
!33%45

"2.4%—2.5% for E-glass and 4.6%—6.1% for
S-glass fibres, thus creating a four to five times higher
level of stored elastic energy at the point of initiation
of debonding in the latter system. It appears that
a complete evaluation of this result must include an
analysis of the elasto-plastic deformations of the
matrix on the calculation of G

*/5
. Work is in progress

along these lines.

4. Conclusions
1. An analytical—experimental analysis of a SFC

can account for friction between fibre and matrix in
the debonding zone. The approach is based on an
exact analytical solution, while characteristics of the
stress—strain state are determined from a FE-analysis
in a contact statement. The debonding length at the
strain at first break is obtained from experiments on
SFC.

2. Numerical analysis of a range of SFC systems
shows that non-linearity of the contact statement may
be neglected within a range of loading of practical
interest. Thus, a simpler linear solution (Equations 9
and 10) may be used for the analysis.

3. The model chosen to analyse the effect of friction
allows direct to calculation of the coefficient of fric-
tion. As a result, a relatively coarse FE-mesh may be
used for calculating the frictional shear stresses in an
efficient manner.

4. The calculated value of interfacial fracture
toughness decreases when the effect of friction is in-
cluded in the model. The magnitude of the decrease
depends on the elastic properties of fibre and matrix,
the debonding length, the strain at first fibre break,
and fibre surface treatment.

5. Because there is virtually no experimental in-
formation on the coefficient of friction between fibres
and matrix in a composite material, independent ex-
perimental characterization of the friction is a signifi-
cant problem for future research.
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